Fabrication and electrochemical performance of 0.6Li2MnO3-0.4Li(Ni1/3Co1/3Mn1/3)O2 microspheres by two-step spray-drying process

نویسندگان

  • Mun Yeong Son
  • Jung-Kul Lee
  • Yun Chan Kang
چکیده

0.6Li2MnO3-0.4Li(Ni1/3Co1/3Mn1/3)O2 composite microspheres with dense structures are prepared by a two-step spray-drying process. Precursor powders with hollow and porous structures prepared by the spray-drying process are post-treated at a low temperature of 400 °C and then wet-milled to obtain a slurry with high stability. The slurry of the mixture of metal oxides is spray-dried to prepare precursor aggregate powders several microns in size. Post-treatment of these powders at high temperatures (>700 °C) produces 0.6Li2MnO3-0.4 Li(Ni1/3 Co1/3 Mn1/3)O2 composite microspheres with dense structures and high crystallinity. The mean size and geometric standard deviation of the composite microspheres post-treated at 900 °C are 4 μm and 1.38, respectively. Further, the initial charge capacities of the aggregated microspheres post-treated at 700, 800, 900, and 1000 °C are 336, 349, 383, and 128 mA h g(-1), respectively, and the corresponding discharge capacities are 286, 280, 302, and 77 mA h g(-1), respectively. The discharge capacity of the composite microspheres post-treated at an optimum temperature of 900 °C after 100 cycles is 242 mA h g(-1), and the corresponding capacity retention is 80%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Microstructure on Electrode Properties of Nanosheet-Derived Hx(Ni1/3Co1/3Mn1/3)O2 for Electrochemical Capacitors

Nanosheet-derived Hx(Ni1/3Co1/3Mn1/3)O₂ was prepared by restacking (Ni1/3Co1/3Mn1/3)O₂ nanosheets with large or small lateral sizes and their electrochemical properties in a 1 M KOH aqueous solution; microstructural factors were compared with those of bulk Hx(Ni1/3Co1/3Mn1/3)O₂ (HNCM). The electrodes composed of small nanosheets exhibited very large capacitances of 1241 F·g-1 (395 mAh·g-1) at a...

متن کامل

A Multi-Component Additive to Improve the Thermal Stability of Li(Ni1/3Co1/3Mn1/3)O2-Based Lithium Ion Batteries

To improve the safety of lithium ion batteries, a multi-component (MC) additive (consisting of vinylene carbonate (VC), 1,3-propylene sulfite (PS) and dimethylacetamide (DMAC)) is used in the baseline electrolyte (1.0 M LiPF6/ethylene carbonate (EC) + diethyl carbonate (DEC)). The electrolyte with the MC additive is named safety electrolyte. The thermal stabilities of fully charged Li(Ni1/3Co1/...

متن کامل

In-situ neutron diffraction study of the xLi2MnO3(1-x)LiMO2 (x=0,0.5; M=Ni, Mn, Co) layered oxide compounds during electrochemical cycling

The layered oxide compounds xLi2MnO3$(1 x)LiMO2 (M 1⁄4 Ni, Mn, Co) are of great interest as positive electrode materials for high energy density lithium-ion batteries. In-situ neutron diffraction was carried out to compare the structural changes between the classical layered compound Li[Ni1/3Mn1/3Co1/3]O2 (x 1⁄4 0) and lithium-excess layered compound Li[Li0.2Ni0.18Mn0.53Co0.1]O2 (x 1⁄4 0.5) dur...

متن کامل

Crystal structure and size effects on the performance of Li[Ni1/3Co1/3Mn1/3]O2 cathodes

Wenting Hou Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States Juchen Guo and David Kisailus University of California-Riverside, Material Science and Engineering Program, Riverside, California 92521, United States; and Department of Chemical and Environmental Engineering, University of California-Riverside, Rivers...

متن کامل

Hierarchical Porous LiNi1/3Co1/3Mn1/3O2 Nano-/Micro Spherical Cathode Material: Minimized Cation Mixing and Improved Li+ Mobility for Enhanced Electrochemical Performance

Although being considered as one of the most promising cathode materials for Lithium-ion batteries (LIBs), LiNi1/3Co1/3Mn1/3O2 (NCM) is currently limited by its poor rate performance and cycle stability resulting from the thermodynamically favorable Li(+)/Ni(2+) cation mixing which depresses the Li(+) mobility. In this study, we developed a two-step method using fluffy MnO2 as template to prepa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014